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ABSTRACT

When a low Rossby number barotropic flow accelerates in the laterally converging half of a strait, the local
propagation speed of long topographic waves can be reduced to zero, thereby blocking or preventing the formation
of a steady flow downstream from the strait. An inviscid longwave theory is presented for the new sieady
upstream and downstream states that evolve from the blocking wave. The enhanced inshore cyclonic vorticity
extending far downstream suggests that topographic jetogenesis, rather than lateral eddy diffusion, in major
ocean straits (e.g., Yucatan and Florida) may be important in generating or reforming boundary currents.

1. Introduction and simple considerations

Steady barotropic currents tend to follow continental
isobaths when the curvature and the Rossby number
R are sufficientiy small. In a region of converging iso-
baths mass conservation requires the downstream ve-
locity to increase, and potential vorticity conservation
requires cross-isobath motions to account for the rel-
ative vorticity changes. Thus the velocity field in a con-
verging channel can increase to a critical state such
that the local propagation speed of long topographic
waves vanishes, in which case no steady downstream
state exists for the given upstream flow. A theory will
be developed for the new upstream and downstream
state as a function of the topographic convergence.

The “blocking” effect that occurs when the flow be-
comes topographically critical is analogous to that in
classical, nonrotating open channel hydraulics (Long
1972) when an obstacle is towed along the bottom of
an otherwise resting layer of water with a speed greater
than that of long surface gravity waves. A wave of ele-
vation then forms with its trailing edge fixed near the
obstacle, and with its leading edge propagating ahead
of the obstacle. In this way a new upstream state with
an increased water level is produced, as well as a new
(supercritical } downstream state. Similar effects occur
in a rotating stratified fluid when it is blocked, and here
it is the Kelvin wave propagation that is relevant. { See
the reduced gravity model of Gill (1977).]

The control effect of continental topography on a
parallel current has been studied by several authors.
Hughes (1985, 1986, 1987) has computed particular
“conjugate” flow states, for stratified as well as baro-
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tropic flow, having the same specified potential vorticity
on the same streamline. Hydraulic transitions between
such end states are possible, but the theory does not
address the question of the new upstream and down-
stream states that evolve when an arbitrary upstream
flow is blocked. In that case the spatial distribution of
an entire field of potential vorticity is modified, so that
the problem becomes more difficult than the classical
one {Long 1972) in which only one or two parameters
(e.g., the fluid height) are necessary to describe the
upstream state. For this reason it is desirable to restrict
our problem to very simple fields of upstream potential
vorticity, such that only a finitc number of degrees of
freedom are involved in its modification. Herein lies
the importance of piacewise uniform potential vorticity
flow in the following inviscid, barotropic. and f-plane
model.

Let us start by considering the steady flow shown in
Fig. 1, in which the distinctive feature of the topography
is the relatively large convergence of the isobaths near
the central axis of the channel, as compared with the
convergence near the sidewalls. The downstream (x*)
gradient of isobathic depth 2*( x*. v* ) is assumed small
compared to the cross-isobath (y*) gradient, so that
—ou*/dy* may be used as the long-wave approxi-
mation for the relative vorticity, where u* is the di-
mensional downstream velocity, and v* < u* is the
y* velocity component. Far upstream in Fig. | a uni-
form u* = Ug is assumed, with Rossby number
Us/fW* < 1, where > 0 is the Coriolis parameter.
Under this condition a first approximation to the law
of conservation of potential vorticity requires the steady
streamlines to coincide with the isobaths, as previously
mentioned. To conserve mass between laterally con-
verging isobaths the velocity U/* on the central axis
must increase relative to Ug , whereas the wall velocities
UT, U3 change less. This implies that a jet forms in
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the converging half of the strait, with the necessary
relative vorticities being produced by cross-isobath
stretching or squashing of columns. Thus the cyclonic
vorticity at Py (Fig. 1) and the anticyclonic vorticity
at P,, require cross-slope displacements as indicated
by the arrows.

All but one of the following calculations will be done
for models (Fig. 2) in which the smooth continental
slopes are replaced by escarpments ( the dashed curves),
across which the nondimensional depth changes dis-
continuously from i = 1 to h = 8 > 1. The lateral
length scale is some W*, chosen (as convenient) to
make either W, or W, or W, equal to unity in Fig. 2,
and the nondimensional D(x) gives the downstream
{x) variation in width of the deepest part of the channel
(the distance between escarpments). The uniform
upstream speed UJ is the velocity scale, Ug/W* is
the vorticity scale, and the Rossby number is R
=Us/fW*

The main problem is to predict the steady flow hav-
ing three piecewise uniform potential voriicity layers,
and a given total volume flux at each x. These three
layers are separated by two interfaces whose displace-
ments L,, L, from their respective escarpments are
tentatively assumed positive in the —y direction (to
anticipate the jetlike profile in Fig. 2).

Since the upstream relative vorticity vanishes, and
since potential vorticity is conserved, the cross-escarp-
ment stretching (8 — 1) of columns in the L, layer
produce the nondimensional vorticity

8 -1
T mm——— 1.1
¢ R (L.1)
u;
- isobah
r v— w'
u
. u*
UD
P -~
—_— Uy =
. isobath
Uﬂ

FiG. 1. Schematic diagram for steady, subcritical (low upstream
Rossby number) barotropic flow through a strait. The sketched iso-
baths converge more rapidly in midchannel than the isobaths near
the shores. The “zero-order” tendency for the flow to follow the
isobaths suggests a large U* must form in the highly convergent
central portion of the straits. The implied relative vorticities require
cross-isobath displacements at points P, and P, as shown by the ar-
rows; W* is a characteristic channel width (dimensional).
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FIG. 2. An escarpment model as a limit of Fig. 1. The depth is
uniform on the two “‘shelves” of uniform nondimensional widths
W', W,. The nondimensional depth increases (discontinuously ) from
unity to 8 across the escarpments (dashed ). Cyclonic vorticity § is
generated in the stnip of width L, located between the upper escarp-
ment and the interface (solid curve) separating the lavers of uniform
potential vorticity. Anticyclonic vorticity is generated in the L, layer.

Likewise, the magnitude of the anticyclonic vorticity
in the L, layeris {_ = (1 — 87')/R, or

BS-={.

According to the long-wave approximation the down-
stream velocity varies linearly in these two vortical lay-
ers, and outside the velocities U,, U, and U, are in-
dependent of y, where U is the uniform velocity in the
central region, U, is the upper-shelf velocity, and U, is
the lower-shelf velocity.

It is instructive to consider first the simplest example,
in which both W,, W, are much larger than Wy = 1,
in which case mass conservation in the relatively wide
regions (W, W;) requires U, = U; =~ . Adding this
to the appropriate shear [Eq. (1.1) or (1.2)] gives the
velocity U between the two interfaces

l+8L,=U=1+ Ly,
and then Eq. (1.2) yields
Lz = ﬂLl.

At any section x the total volume transport between T
the two interfaces is the sum of two parts, one of which 0O
(BU(D — L;)] occurs in deep water, and the other

[4(U + 1)L;] occurs in the shallow anticyclonic layer. -
This sum is independent of x and equal to the transport ————
BW, =B at x = —a0, so that e

(1.2)

(1.3)

(1.4) —mem——ed

V= +L)(D = L)+ (1 +L,/2)L,/8.
The use of (1.4) then gives the quadratic equation  ‘pdes
LI-2DL,+2(1 -D)/¢=0 (1.5) °F

A2 ool
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and the solution satisfying 1., = O when D = | is
Li=D—(D>-2(1-D)y/H". (1.6

This is positive because D(x) < 1, and thus our initial
assumption L, > 0, L, > 0 is verified. The discriminant
of the quadratic vanishes at a section where

D 1 ( 1 2)" !
X)=—=+4|—+ = <1,

§ ¢ f
in which case L, = D, L, = gD, and consequently a
triangular jet forms having a maximum velocity

) _ 1/2
+ 2(8 1))

= = 12 =
U=1+¢L,=(1+28) (l R

located on the lower escarpment. If R = Ug/fW
< 1, where the central channel width W § now provides
the W* scale, this U is very large compared to the
upstream current, and thus we see that pronounced
inviscid jetogenesis can occur in the laterally converging
half of a channel. The large values of the cyclonic and
anticyclonic vorticities may then cause separation as
the jet enters the diverging half of the channel (Stern
and Whitehead 1990). This is one kind of transition
that would prevent a reversal of the vorticity generation
in the diverging half of the strait, and that would allow
a jet to appear far downstream.

For the smaller W,, W, (narrower shelves in sections
2 and 3), a hydraulic transition or blocking can occur
first, and the single shelf (W, = 0) model in section 2
will address the main question, namely, what happens
if minD(x) is small enough to block the uniform up-
stream current.

Both kinds of transition seem to be relevant to the
influence of major ocean straits on the circulation in
the basins they connect. One example is the Atlantic
western boundary current, which appears to become
very diffuse (and remote from boundaries) after en-
tering the Caribbean Sea, and until it reforms as a jet
in the vicinity of the Straits of Yucatan (Gordon 1967,
Molinari et al. 1981 ). This Gulf Stream jet then passes
through the Guif of Mexico, and enters the Straits of
Florida where the maximum mean inshore vorticity
increases to a value approximately equal to the Coriolis
parameter ( Brooks and Niiler 1977). It is unlikely that
this large inshore vorticity can be correctly explained
by a lateral diffusion mechanism and a proper expla-
nation should be based on an inertial (potential vor-
ticity conserving ) mechanism, taking into account the
isobaths (and the isopycnals) in the strait (Stern 1991).

2. A converging channel with a single escarpment

In Fig. 3a W/, has been set equal to zero, W, = | is
the length unit, and D(x) < 1 is the distance between
the curved lower wall and the escarpment. Note that
in a long-wave theory the curvature of isobaths i< un-
important, compared to their y separation, so that Fig.
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3a1s dynamically equivalent to Fig. 2 when HL = 0,
{Such a modet might be realized v a long rowating
channel by towing an obstacle placed on a wall through
an otherwise resting hquid.) In this case a single inter-
face separates two regions of uniform potential vortic-
ity, and R = U'S/fW* and 8 are first assumed to be
such that a steady long-wave solution exists with L
= L(D{x)) = 0. As previously indicated ( 1.1 ), the rel-
ative vorticity immediately above this interface is

_B-1

"%

>0 (2.1)

and below the interface the velocity U is independent
of y. The local volume transport U(D — L) in the
latter region must equal the value (8)at x = — o , and
therefore

1
Us=s —o

5T (2.2)

The shear above the interface ( Fig. 3a) gives the velocity
U =U-¢{L (2.3)

at and above the escarpment. Therefore the total vol-
ume transport above this interface is U, W, + (U,
+ U)LB, and the latter must equal the transport ¥,
at x = —oo. Simplification of this equality using (2.2)~
(2.3) yields

_i+Lg/w . BLE
=T LT, (24
W
D=L +—LTEBIW, (2.4b)

1+ oL+ BL/2W,

The implicit solution (2.4b) for L = L(D) reduces to
D=1+ L(B/IW,—¢+ 1)+ - -+ when L = 0, and
since D < | a necessary condition for the L > 0 as-
sumption is

> 1+ 8/W, (2.5a)
or
g~ 1
R < TR (2.5b)

The right-hand side of (2.4b) is positive and asymptotes
to D = I. when L is large. so that a minimum D = D,
exists. This point separates two branches ( Fig. 3b) hav-
ing different L values for the same D, and if minD
< D, no steady solution exists for the upstream flow
with uniform velocitv.

For relatively large U™ Eq. 1 «.4a) reduces t0 1 qua-
dratic equation

I !{.ﬂ—%) L0 (2.6)
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FI1G. 3. {a) Flow of a uniform upstream current U, = 1 in a channel
with a single escarpment (dashed horizontal line}. The distance D(x)
of this from the lower vertical wall varies slowly on the W, = 1 length
scale. The interface between the piecewise-uniform potential vorticity
layers is displaced downward (negative y) by an amount L{x) > {
in the steady state. Above the interface nondimensional vorticity {
is thereby generated. and the velocity varies linearly between the
vatues U, and U. {b) Sketch of a long wave solution for L as a
function of D. The branch point at D = D, is the smallest value
possible for a given Rossby number at x = —o¢ . (c) Schematic diagram
of the temporal evolution of the potential vorticity interface [L(x,
0) = 0] when a small amplitude constriction ( the stipled *strait™)} is
suddenly moved leftward at ¢+ = 0 with a uniform subcritical speed.
The transverse velocities v forced at ¢ = 0 tend to deflect the interface
to L{x, 1;), and this generates relative vorticities whose sense is in-
dicated by the circular arrows. These vortices cause the interface to
propagate to L(x, ;) for 1, > t;. As t = o the ridge ahead of the
constriction continues propagating to x = —o, whereas the trough
remains behind in equilibrium with the v forced by the constriction,
as shown in (a).

and the solution that vanishes at D = { is

!
2L={D-~
(s“)

r I L
Mu—u mlwbuq >0. (2.7)
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The mintmum width D. of the strait necessary for
blocking in this case is given by setting the discriminant
equal to zero, that s,

-

1\? i
0={D.—=} -4l - DY/t={D.+=} -
(2= ) -2 pare=(pvg)

and therefore

R \'? R
= 172 -t _
D =2 ¢ 2(5—1) s 29

For large W, Eqgs. (2.2)-(2.4a) also imply

Uy— 1, (2.9a)

which is obviously required to satisfy the transport re-
lation W, U, = W, in the wide (W, > 1) region.

The question arises as to the physical consistency of
an inviscid escarpment model, and its relation to a
model with slightly smoother topography. Accordingly,
the critical value for (2.4b) has been compared (in the
Appendix ) with the corresponding value for a model
having a smoother continental slope. The numerical
results indicate that the inviscid escarpment limit is
approached asymptotically for large finite continental
slopes (in which case the lateral viscous stresses might
be consistently neglected.) This justification of the es-
carpment model is necessary because it provides the
only tractable nonlinear theory for obtaining the new
upstream state when the old one is blocked, as will be
seen. Before proceeding to this question, a physical ex-
planation of Fig. 3a, and motivating arguments for Fig.
4 are in order.

The appearance of a steady-state “trough™ (i.e., L
> 0 in Fig. 3a) can be qualitatively explained in terms
of well-known (e.g., Stern 1991 ) properties of free and
forced topographic long waves. Consider the evolution
from time ¢t = 0 when the fluid is resting with L(x, 0)
= (0, and then the strait (constriction ) is moved lefiward
with uniform speed (Fig. 3¢). This obviously forces an
initial transverse velocity v > 0 at x < 0, and v < 0 at
x > 0, so that the potential vorticity interface at small
t; > 0 is deflected as shown. The vorticity generated
by the cross-escarpment displacement then causes rel-
ative leftward phase (and group) propagation of L if
the relative upstream velocity is subcritical {i.e., smaller
than the propagation speed of free topographic long
waves). Therefore, at 1, > ¢, the L-ridge moves ahead
of the strait and continues propagating to x = —oo as
an unforced (free) wave, But the advance of the trough
eventually ceases under the influence of the forced v,
and thus the steady-state trough L > 0 (Fig. 3a) is
attained in the strait.

This picture applies to small values of (1 — D,,),
and for larger ones a first-order nonlinear hyperbotic
equation (Stern 199!} applies to the evoiutionary
problem. In this case the current in the converging strait
may increase to a value such that the “local L-propa-
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gation speed” (according to the method of character-
istics ) vanishes, at which point (x) the trailing edge of
the ridge remains behind in the vicinity of the strait,
while the leading edge continues propagating to x
= —oo in the locally subcritical region (D = 1). Figure
4 is a schematic diagram of this conjectured flow, as
seen by an observer on the strait. As 1 — o the up-
stream propagating blocking ridge (A > 0) produces a
new mean field with an anticyclonic shear layer at all
finite x < Q. Farther downstream a transition to the
supercritical branch (cf. Fig. 3b) of the new steady so-
lution occurs, with cyclonic vorticity appearing in the
trough region {Fig. 4). This (incomplete) picture of
the temporal evolution provides the motivation for the
following “self-consistent™ steady long-wave theory,
Let xp in Fig. 4 denote the (unknown) zero crossing
point of the interface, let D, denote its distance from
the curved wall, and let U3 denote the (unknown ) hor-
izontal velocity at xp. This velocity must have the same
value in both layers because L{Dy) = 0 implies that
there is no vorticity at xy. Since the total volume trans-
port between the two walls must have the same value
at all 7, x (even at x = +oo in the transient region), it
follows that the transport UgDy8 + Ui, at X, must
equal the original transport W, + fat x = —c0, or

. 1+8/W,
Us T+ gDy W, (2.10)
Let L(x) = 0 be the interface displacement in the x
= xg region, and let A(x) = O be the interface displace-
ment in the x < xp region. By applying mass conser-
vation to the former region (as done previously), and
using L(Dy) = 0, a solution for L(D) is obtained con-
taining one unknown (U3g). Since the blocking con-
dition min D < D, is satisfied, the solution requires a
branch point with 3L /3D = cc, and with dL /dx = (3L /
dD)(3D/dx) finite. Therefore the branch point must

L LSS L LS 2L
1 >0 ?-U—°- ——l
— W?},\\_ N RN
I A v gy U e
}

F1G. 4. The modification of the upstream flow by a topographic
blocking wave. The minimum width D, of the deep channel is at x
= 0. A wiggly arrow indicates the upstream propagation of the an-
ticyclonic vorticity ( { > 0) layer of thickness A(x) > 0. This produces
a reduction of the lower-layer velocity { U_) relative to the undisturbed
velocity { =1}at x = —ot. At x > Xy a compensating cyclonic vorticity
(¢ > 0) of thickness L{x) > 0 develops downstream. At large finite
distances upstream from the obstacle, and at large finite time after
startup. a steady state is assumed, even inough the blocking wave
continues propagating to x —» —G,
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occur where D /dx = 0, thatis. at x = O where D = [,
(Fig. 4), or

o

g IS

al. D

This equation determines the fina! unknown in the L
= L{D) solution, and gives the new downstream ve-
locity field. With Dy and U'f known. the mass balance
for x < xp gives A(D) and the new vorticity field up-
stream from the strait.

This outline of the calculation will now be carried
out for the simplest case of large W', [cf. Eq. (2.7)]. in
which case the upper-layer velocity (2.9a) is nearly
equal to unity (U = 1) atall x,and U =1+ {L
beneath the interface in the cyclonic (x > x) region.
The steady mass balance for this region then becomes
(L + LD — L) =Dy, or

(2.11)

L* - L(D - %) + (Do — D)/ {=0. (2.12)

For the (8, R) values listed subsequently, the zero-
crossing point is at xp < 0 and therefore D < Dy in X
<x<0.SinceL>0a D—D,~0",Eq. (2.12)
requires

1 R
Dy>—=——, 2.13
o> T ( )
and therefore, the solution that vanishes at xp is
2L=(D—l)
g-
i 2 1/2
w{(D—}-) ——4(D0—D)/§‘] >0. (2.14)

Downstream from the branch point (x = 0) defined
by (2.11) the appropriate solution of (2.12) is

1 1 2 1/2
2L = (D — —) + [(D ~ ?) — &4(Dg ~ D)/s“}

$
(2.15)

and the branch point (D = D,,) occurs where the dis-
criminant vanishes, or

2
0= (D,,. - %) — 4(Dy ~ D)/ ¢

1\ 4D,
={p, +-) - 22
( +§) ¢

Therefore the zero-crossing point of the interface occurs

where
_$ 12
Do—4(D,,,+ §.) .

Equations (2.14)-(2.16) give the new downstream
state ( L > 0) after blocking occurs; but ( 2.13) restricts

(2.16)

]
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the solution to the parametric regime | < {0, = ({D,,,/
2 + 1h)°, or {D,, > 1. and by combining this with
{2.9) we get

¢l <Dy <20 (2.17)

|
= > ]
{ R

for the restricted D,, range.

The A = 0 solution for x < x is obtained by noting
that U7 = 1 — A{. is the velocity below the escarpment
in t1g. 4, where {_ = {/8. Thereiuce the {otal transport
below the interface is

DU + %(1 + U)X = DB

or

A - 2)\(—1— - BD) - gﬁ(D - Do) =0, (2.18)
- $-
1>D>DO>D,,,>%. (2.19)
These inequalities imply ¢{=! — 8D < 0, and therefore
the solution of (2.18) satisfying A = 0 is

1 1 2 172
A=E—BD+[(E—/3D) + 28(D — Dy)/ ¢-
(2.20)
At x < xp, U_ = 1 — X{_ becomes
U.=D{— (2D = 2tDg + D', (2.21)
and far upstream (D —» 1) the velocity is
U_(~ac) = ¢~ ({2 —2{Do + 1)'/3, (2.22)

where Dy is given by (2.16).

These results may be summarized as follows. No
blocking occurs when the minimum channel width D,
exceeds the upper bound in (2.17), and in this case
the original upstream flow merely produces a sym-
metrical trough L{x) = 0 in the vicinity of the obstacle.
When D, is slightly less than the upper bound in
(2.17), Eq. (2.16) gives Dy, — 1, which means x, —
—oc, A = 0%, and L(x) > 0 at all x. But there is a
branch point at x = 0, and a transition from (2.14) to
(2.15), so that at x = 4o we get 2L = 2(1 — 1/¢{)
> 0. If D,, is decreased further below the upper bound
in (2.17) then Dy < 1 1n (2.16), x, becomes finite
negative, A(x) > 0, and a finite modification of the
upstream state (Fig. 4) occurs in which anticyclonic
vorticity appears, in addition to the cyclonic vorticity
in the L > 0 strip which extends far downstream. When
D, equals the lower bound ({7') in (2.17) then Dy
= 1/{= D, sothat x, = 0, and the modified upstream
velocity (2.22) is

U . =¢—(-NH"7 <L

STERN
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If D,, is less than the lower bound in (2.17 ) then a sign
change in v, 1¢ suggested (by the sbove value of x,
= (), in which case a separate calculation 1s necessary.
The foregoing calculation also does not apply when R
exceeds the bound in (2.5b), because the current at x
= -~ is strong enough to prevent upstream topo-
graphic wave propagation,

This steady longwave theory neglects the possibility
of persistent short wave effects, such as are bound to
occur {as “‘shocks™ } in the temporal evolution. These
eddy effects might be studied in a finite difference com-
putation using a smooth continental slope model, such
as appears in the Appendix.

3. The two-escarpment model of a strait

Figure 2 has a greater geometric resemblance to a
strait, and a jetlike (L, > 0, L; > Q) solution is sought
when W, = | = W, provide the length scale. The cy-
clonic vorticity {is given by (1.1), and the (magnitude
of the) anticyclonic vorticity {. is given by (1.2). The
uniform velocities on the upper and lower shelf are
given, respectively, by U; = U~ {L,, U, = U — Ly{,
where Us the uniform velocity between the interfaces.
What is min(D) for a hydraulic or for a separating
transition in this model?

For the lowest layer (Fig. 2) of uniform potential
vorticity and unit depth the total volume transport (U
— L,¢.)(1 — Ly) at any D(x) must equal unity, or

U= + Lyt (3.1)

1 - L;
In the middle layer between the two interfaces, the total
volume transport BU(D — L)) + (U — L,{-/2)L,
equals W, or

LU=UD— Wy+ 8 (U= Ly /2)L,. (3.2)
In the uppermost layer the transport balance is
U—-¢L +8U—-SLy/DL, = L (3.3)

The values of (8, R, W,) necessary to justify the L,
> 0, L, > 0 assumption are obtained by letting x —
~w, Ly >0 L,—=>0U-1l=u-»0 W,—-D
=2M(x) — 0%, In this region the linearization of
(3.1)-(3.3) yields

p=C1+ )L,
L| = ﬂu/() -2M+ ﬁ‘-ll“z.
w=({—-8)L,
and consequently
- 2M(¢ — B)
T+ (=B + )W+ 87117
(3.4)
L] = ! tg-— I;z.
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The last equation requires

) _B-=1

p’<g‘——~———R . {3.5)
and since M > 0 Eq. (3.4) requires
(=B + W +87"1—(1+{)>0. (3.6)

When this is multiplied by 8 and when 8¢. = {is used,
we get

(=B +B8Wo + 1]~ (£ +8)>0

or

_ 2
8 o (B

2
/3 +W0 RZ

(3.7)
This condition for positive (L, L,), as well as the one
in (3.5) is obviously satisfied for sufficiently small
Rossby number.

The significance of (3.7) appears by considering the
conditions under which the basic flow at x = —oc can
support a free (i.e., M(x) = 0) stationary long wave
of infinitesimal amplitude. Equation (3.4) implies that
this will occur when the denominator vanishes, or when
the left-hand side of ( 3.6) vanishes, or when an equality
sign replaces the inequality in (3.7). The latter equality
then gives the Rossby number for a stationary long
wave, and for smaller R the long wave propagates up-
stream. It is under the latter condition (3.7) that a
steady forced solution with L; > 0, L, > O for D(x)
< W, is obtained. {See the previous argument in con-
nection with Fig. 3c.)

TABLE la. Critical values of the parameters for the two escarpment
model {section 3 and Fig. 2) when 8 = 2, and for various values of
R. ;. The first row for each entry is the minimum D, and the
following rows are U,, U, U, respectively. The symbol H indicates
a hydraulic or blocking transition.

Wo
R 1 2z 4 8 32
1/4 .85 H 140 H 25H 468 H 2608 H
544 .168 178 470 769
1.455 1.831 1.821 1.829 1.230
1.167 1.332 1.327 1.331 1.080
1/6 .68 H .16 H 212H 436 H 15.68 H
383 302 294 426 .303
1.9614 2.068 2.078 1.903 2.066
1.288 1.327 1.331 1.268 1.326
110 52 H 92 H 1.72H 330H 128 H
386 .389 389 .380 377
2.507 2.501 2.500 2.517 2.524
1.313 1.312 1.311 1.316 1.317
1720 36 H 62 H 1.24 H 22H 8.64 H
340 .286 417 .283 .304
3.647 3.787 3.439 3.795 3.742
1.305 1.326 1.276 1.327 1.319
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TasLE Ib. Same as Table taexcept i = L5 The symbol S indicates
a separation transition. A hlank entry indicates a0 transition (the
upstream flow s not subcritical).

W,

R | 2 4 B 32
1/4 — 188 H 3145 568 227H
38S 036 016 245
1.358 1.603 1.619 1.439
1167 1.297 1.306 1.209
176 91t H 1.51 H 260 H 480 H 278 H
703 2435 176 479 847
1.296 1.756 1.823 1.820 1.152
1.105 1.267 1.328 1.327 1.052
1/10 JOH 1LI6 H 2.12H 400 H 150 H
.51 31 .35 344 314

1.875 2.165 2.107 2.419 2.16

1.236 1.332 1.312 1.316 1.33
1720 48 H 82H 148 H 288 H 10.8 H
344 358 338 37 342
2.975 2.945 2.998 2918 2.980
1.328 {322 1.333 1.316 1.329

It will now be shown that neither L, nor L, can
change sign farther downstream in the region where
their amplitudes are finite. Suppose the contrary were
true, and let x’ denote the smallest x at which either
L, or L; vanish. If Ly(x') = 0 with L,(x’) > 0 then
(3.1) yields U = |, and (3.2) yields D = Wy + L,
> W, which contradicts the initial assumption (Fig.
2) that D(x) < W,. If, on the other hand, L,(x’) =0
with L,(x") > 0 then (3.3) gives U = 1, whereas (3.1)
gives U > 1, and thus a contradiction is again obtained.
Therefore all admissable solutions of the nonlinear
equations (3.1)~(3.3) have positive L,, L, if (3.7) 1s
satisfied.

The solution of the nonlinear equations is obtained
by multiplying (3.1) with 1 — L;, by multiplying (3.3)
with (1 — L,)3U?, and by eliminating both L,U and
U from (3.3) to obtain a seventh-order polynomial
equation for the single unknown L,. The very large
number of terms in the coeflicients of this polynomial
were assembled by a symbolic computer program, and
then the L, root was computed by a careful numerical
search for the zero-crossing point of the polynomial.
Since this starts from a point far upstream where L; is
very small, very small L, increments must be taken in
the search, and then small D increments must be taken
to remain on the same branch of the seventh-order
polynomial as one proceeds downstream. The run ter-
minates at that D = D, for which there is either no
root (“hydraulic transition” point) or one of the ve-
locities (U/;) turns nepative (“‘separation”). Tables
ta,b.c list the solution for various values of 8, R, W),
and the letter H or S indicates the type of critical point.
For example, when 8 = 1.5 (Table Ib), R = l/1g, B}
= |, a hydraulic transition ( H) occurs (first} when the
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Taste lc. Same as Tables la, (b except 3 = 1.25.

Ho

R i 2 4 8 32
174 — - — — —
176 - _ —_ 6.088S 2168

027 .007
1.527 1.543
1.271 1.280
/10 94H  159H  268H  488H  1824H
758 336 174 179 198
1.241 1.663 1.825 1.820 1.801
1.084 1.256 1.329 1.327 1318
1/20 67H  LI12ZH  19H 368H  140H
.546 410 336 337 347
1.9814 2.209 2327 2.326 23114
1.230 1.295 1331 1.331 1.326

minimum channel width is D = 0.70, and at this section
U, = 0.51, U = 1.875, U, = 1.236. The accuracy of
the roots was checked by using those values to compute
the local volume flux, and by comparing the result with
the flux at x = —aG,

The downstream evolution of the jet is illustrated in
Fig. 5a for W, = 8, R = ljg, 8 = 1.5. This shows that
as x increases from —oo (where D = §), wic value of
U, decreases and a hydraulic transition point occurs
at D = 4.80 with minU,; > 0. At a larger R (Fig. 5b),
with other things being equal, a separation (U, = 0)
transition occurs first at D = 5.6. In both cases a jet
(U > U, > U)) forms, but Tables 1a,b,c indicate that
the separation regime is relatively restricted, occurring
only for the larger Rossby numbers and for the smaller
topographic effect (8 - 1). The table also shows that
decreasing R, with fixed Wj and 8, requires a decreasing
D (i.e., a greater strait convergence) for a critical
state, and the accompanying maximum jet velocity U
1s increased.

When blocking occurs in Fig. 2 the new state that
arises could be obtained by generalizing the procedure
in section 2, but the algebra then becomes formidable.

Interesting variations in Fig. 2 and Fig. 4 might be
obtained by less restrictive shelf widths (W, W), in
which case separation might be more prevalent. The
effect of a sill might be obtained by allowing 8 to vary
with D. It may also be possible to replace the rigid
bottom in the central channel (Fig. 2) by an interface
beneath which the fluid density increases, and above
which the potential vorticity is {piecewise) uniform.
Then the important role of buoyancy on the blocking
could be ascertained.

4. Conclusions

A jet can be generated by inviscid cross-isobath flow
through the converging half of a strait, and two types
of transition may allow the generated vorticity to ap-

STERN &53

pear in the diverging half. The local flow may become
hydraulically critical in which case the generated to-
pographic blocking wave modifies the upstream state
as well as the downstream state (Fig. 4 and section 2).
In the second kind of transition an everywhere sub-
critical jet may separate because of the relative vorticity
generated in the narrow part of the strait [cf. Fig. 5b
and Stern and Whitehead (1990)].

Both transitions are examples of purely inertial (as
contrasted with diffusive) mechanisms for generating
inshore vorticity in the passage of currents through
straits. They may therefore be relevant to the expla-
nation of the large cyclonic vorticity in the Straits of
Florida, and to the explanation of the reformation of
the western boundary jet in the vicinity of the Straits
of Yucatan.
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FIG. 5. (a) Downstream variation of velocity in Fig. 2 when
minD(x) equals the critical value for a hydraulic transition, and
when W, = 8 = D{~), R =V}, = 1.5. U, is the uniform velocity
on the upper shelf, {/; is the velocity on the lower shelf, and U is the
uniform velocity between the two potential vorticity interfaces. A jet
with U > U,, U > U, forms at the transition point D = 4.8. (b)
Same as (a) except that R = /. In this case a separation transition
(Uy = Q) at D = 5.6 occurs before a hydraulic transition,
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Similar kinds of transitions could occur in a purely
continental type of topography (cf. Stern 1991, Fig.
2). such as is obtained by removing the sidewall in
deep water and curving the sidewall on the shelf. 1
would like to take this opportunity to correct an omis-
sion in that paper (Stern 1991). A term F sinhke
+ coshke should appear in the denominator of the in-
tegral of Eq. (4.9), but this term equals unity in the
long-wave (k - 0) limit, and consequently the omis-
sion affects none of the equations following (4.9).
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APPENDIX
A Smooth Continental Slope

For previously mentioned reasons it is important to
compare the critical blocking condition for the escarp-
ment model in Fig. 3a with the value obtained for a
smoother nondimensional cross-stream topography
h(y) that is also independent of x. For this calculation
it is convenient to take the distance W, = | of the
upper wall from the y = 0 datum (defined below) as
the unit of length, with y = —D(x) as the ordinate of
the curved lower wall, and with D(-oc ) = W asa free
parameter. The uniform velocity at x = —oc is again
taken as the velocity unit, that is, U, = 1.

If # = 6(y) denotes the ordinate at x = —co of the
steady streamline whose ordinate is y at D(x), then
the Lagrangian volume conservation equation in non-
dimensional units is

u(y)=qg—3, (A.1)
h(8)

= e A2

q ")’ (A.2)

and the potential vorticity conservation equation is

du 1|1
woEl) e
where
. U
R W (A4)

The solution of (A.1)~(A.3) for y = y(6) must satisfy
the boundary conditions

y(1) =1, (A5)
W—=Ws) = —D(x), (A.6)

for a given W and for each D = D(x). The numerical
solution is greatly facilitated by replacing (A.6) with
an assigned value of u( 1), and then “marching™ to 8
= — W,, at which point the computed y gives the value
of D for each u(1). The calculation proceeds with suc-
cessively smaller values of (1) < 1 until the minimum
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TasLr 2. Mimmum channel width (12 -~ 12.,) for blocking as a
function of the inverse continental slope (3). Here (- 13} is the cor-
responding velocity at the curved (lower) wall, and (1) 1s the velocity
at the upper walli R = 530, 3 = 1.5, By, = 1. See Appendis for

definitions.

s Doy uil) (-~ 0)
€L .50 42 33
10 .499 400 3.29
S 513 222 330
2.5 535 .286 2.71
{ 687 166 1.43

D [as a function of u(1)] is reached. This gives the
critical amplitude of the obstacle necessary to block
the upstream flow, and to cause a hydraulic transition.

Calculations were made for the hyperbolic tangent
profile

h(y) = —ptanh(sy) + ptanhs + 1, (A.7)

g—1
tanh(sW,) + tanhs’

p

whose maximum slope defines the y = 0 datum level,
and which satisfies 4(1) = 1, h(—W}y) = 8. The free
parameter s is a measure of the inverse width of the
continental slope, and s — oo gives the escarpment
limit in Fig. 3a.

A second-order Runge-Kuita integration was used
to solve Egs. (A.1)~(A.3), and the step size used was
checked by comparing the total volume transport at x
with an analytic calculation at x = —o . Table 2 gives
the results for four finite s when Wy = 1, R = I/30, 8
= 1.5. The 5 = oo entry was obtained from (2.4b) for
the escarpment model in section 2, and we conclude
that the critical value of D for blocking is essentially
the same in the interval 5 < 5 < oo, thereby validating
the asymptotic consistency of the escarpment model.
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